Example: A reprogrammable small Model-1

This is work in progress and here comes some more pictures and description.

Well there
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
# This is a YAML description file for a machine.
# A poor man's Analog HDL (should use Verilog HDLs instead)
#
# Copyright (c) 2020 anabrid GmbH
# Contact: https://www.anabrid.com/licensing/
#
# This file is part of the FPAA module of the PyAnalog toolkit.
#
# ANABRID_BEGIN_LICENSE:GPL
# Commercial License Usage
# Licensees holding valid commercial anabrid licenses may use this file in
# accordance with the commercial license agreement provided with the
# Software or, alternatively, in accordance with the terms contained in
# a written agreement between you and Anabrid GmbH. For licensing terms
# and conditions see https://www.anabrid.com/licensing. For further
# information use the contact form at https://www.anabrid.com/contact.
# 
# GNU General Public License Usage
# Alternatively, this file may be used under the terms of the GNU 
# General Public License version 3 as published by the Free Software
# Foundation and appearing in the file LICENSE.GPL3 included in the
# packaging of this file. Please review the following information to
# ensure the GNU General Public License version 3 requirements
# will be met: https://www.gnu.org/licenses/gpl-3.0.html.
# For Germany, additional rules exist. Please consult /LICENSE.DE
# for further agreements.
# ANABRID_END_LICENSE
#

title: AP/M-1 Mini

description: |
   This file describes the hardware layout of a particular Analog Paradigm
   Model-1 machine with software-definable XBAR in the smallest setup,
   containing SUM8, INT4, MUL4, DPT32 (and of course XBAR, HC).
   
   The number of Summers limits the number of negating-macro elements
   which can be built. The configurable parts show what can be done
   
      SUM8.1 => 1 x SUM2m
      SUM8.2 => 0.5 SUM2pm
      SUM8.3 => 0.5 SUM2pm
      SUM8.4 => 0.5 SUM2pm
      SUM8.5 => 0.5 SUM2pm
      SUM8.6 => 1 x INT2pm
      SUM8.7 => 1 x INT2pm, leaving 1 x INT2m
      SUM8.8 => 1 x MUL2pm, leaving 1 x MUL2m

   In total 8 computing elements. See configurable_parts for the formal
   definition.

configurable_parts:
   # naming follows the HyCon YML file, part "elements"
   INT0-0:
     type: INTpinv
     address:
       out: 0x0160 # integrator INT8.1
       inv: 0x0123 # summer SUM8.4 as inverter
   INT0-1:
     type: INTpinv
     address:
       out: 0x0161 # integrator INT8.2
       inv: 0x0126 # summer SUM8.7 as inverter
   INT0-2:
     type: INTp
     address:
       out: 0x0162 # integrator INT8.3
   MLT0-0: # HyCon calls it MLT8-0
     type: MULpinv
     address:
       out: 0x0100 # multiplier MUL4.1
       inv: 0x0127 # summer SUM8.8 as inverter
   MLT0-1: # HyCon calls it MLT8-1
     type: MULpinv
     address:
       out: 0x0100 # multiplier MUL4.2
   SUM0-0:
     type: SUMpinv
     address:
       out: 0x0120 # summer SUM8.1
       inv: 0x0124 # summer SUM8.5 as inverter (is below 1)
   SUM0-1:
     type: SUMpinv
     address:
       out: 0x0121 # summer SUM8.2
       inv: 0x0125 # summer SUM8.6 as inverter (is below 2)
   SUM0-2:
     type: SUMp
     address:
       out: 0x0122 # summer SUM8.3
   PlusOne:
     description: |
       Positive supply voltage/machine unit, also refered to as Vcc or Vdd,
       i.e. +10V in this machine.
     cannot_be_allocated: True
     type: ConstantVoltage
     input: [ +1 ]
   MinusOne:
     description: |
       Negative supply voltage/machine unit, also refered to as Vss,
       i.e. -10V in this machine.
     cannot_be_allocated: True
     type: ConstantVoltage
     input: [ -1 ]
   None:
     description: See description of NoneType
     cannot_be_allocated: True
     type: NoneType
   
   
# We currently not make (yet) use of these levels anywhere, but they
# are later required for evaluating MUL's, for instance.
logic:
   boolean: [ True, False ]
   machine_units: [ +1, -1 ]
   voltage_range: [ +10, -10 ]
   voltage_unit: V
   DGND_voltage: 0 # won't this be different
   AGND_voltage: 0 # on the chip?

entities:

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
#            Elementary building blocks of Model-1 Computer
#
## # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

   DPT:
     type: elementary
     description: |
        A single digital potentiometer (part of a DPT24 or HC module).
     computes:
       vs: vs=v0*v
     input:
        - { name: v0, type: numeric, range: [0, 1] }
        - { name: v, type: analog }
     output:
        - { name: vs, type: analog }

   SUM:
     type: elementary
     description: |
        A single summer (part of a SUM8 module).
        The summer is a negating summer featuring
          * three inputs of weight a=10 (input prefix "d" for "decade") and
          * three inputs of weight a= 1 (input prefix "u" for "unit")
        We are lazy so we only describe two input lines each.
        We dont model the summing junction (SJ) yet.
     computes:
       out: out = -(10*d1 + 10*d2 + u1 + u2)
     input:
       - { name: d1, type: analog }
       - { name: d2, type: analog }
       - { name: u1, type: analog }
       - { name: u2, type: analog }
     output:
       - name: out
         type: analog
         description: Output of negating summer
     default_inputs: { d1: None, d2: None, u1: None, u2: None }

   INT:
     type: elementary
     description: |
        A single integrator (one of the INT4 module).

        The integrator is an (implicite negating summing) intergrator
        featuring
          * three inputs of weight a=10 (input prefix "d" for "decade") and
          * three inputs of weight a= 1 (input prefix "u" for "unit")
        We are lazy so we only describe two input lines each.
        For the moment, we dont model/make use of ModeIC and ModeOP.
     computes:
       out: out  =  integral(-10*d1(t) - 10*d2(t) - u1(t) - u2(t), t)
     input:
       - { name: d1, type: analog }
       - { name: d2, type: analog }
       - { name: u1, type: analog }
       - { name: u2, type: analog }
       - name: ic
         type: analog
         description: Initial condition
     output:
       - name: out
         type: analog
         description: Output of integral
     default_inputs: { d1: None, d2: None, u1: None, u2: None, ic: None }


   MUL:
     type: elementary
     description: |
       A single multiplier (one of the MLT8 module).

       Remember that multiplication is implemented normalized. For instance,
       if machine voltage is level=+10V (actually +-10V), the multiplication
       computes res = (a/level * b/level)*level in order to make sure
       |res|<10V.

       -> In order to decouple analog programming from the machine where
          it runs, the normalization should be implemented in the
          compilation step!
     input:
       - { name: a,   type: analog }
       - { name: b,   type: analog }
     output:
       - { name: out, type: analog }
     computes:
       out: out = a*b/voltage_level
     default_inputs: [ a: PlusOne, b: PlusOne ] # useful?
     
   CMPad:
     description: |
        The left part of a CMP4 comparator (analog2digital),
        i.e. a treshold based binarization.
     computes:
       res: res = a+b>0
     input:
       - { name:   a, type: analog }
       - { name:   b, type: analog }
     output:
       - { name: res, type: digital }

   CMPda:
     description: |
        The right part of a CMP4 comparator (digital2analog),
        i.e. a single electronic switch switching between two analog
        signals.
     computes:
       u: u = if(i, a, b)
     input:
       - { name: i, type: digital } # boolean
       - { name: a, type: analog  } 
       - { name: b, type: analog  } 
     output:
       - { name: u, type: analog  }


# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
#         Macro computing elements plugged together by elementary ones
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

   SUMp:
     type: macro
     description: |
        A single summer (SUM8 part) and two digital potentiometers.
        We only use weights a=10 from the summer.
        The flow chart is given by:
        
          (a0)----+
                  |
                  v
          (a)->[DPTa]--(as)-->[10|        ]
                              [  | SUMo   ]---> out
          (b)->[DPTb]--(bs)-->[10|        ]
                  ^
                  |
          (b0)----+

     computes:
       out: out = -(a0*a + b0*b)
     input:
       - name: a0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: a
         type: analog
       - name: b0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: b
         type: analog
     output:
       - name: out
         type: analog
         description: Output of negating summer
     default_inputs:
       a: None
       b: None
       a0: 0
       b0: 0
     internal_wires:
       - name: as
         type: analog
         description: Scaled a (output of DPTa)
       - name: bs
         type: analog
         description: Scaled b (output of DPTb)
     partlist:
       DPTa:
         type: DPT
         input: [ a0, a ]
         output: as
       DPTb:
         type: DPT
         input: [ b0, b ]
         output: bs
       SUMo:
         type: SUM
         input: { d1: as, d2: bs }
         output: out
     # These "is a"-relations should allow using elements instead of others
     is_a:
       SUM:
         description: Can mimic a simple summer when having both DPTs = 1.
         default_inputs: [a0: 1, b0: 1]
       DPT:
         description: Can mimic a simple potentiometer when not summing at all.
         default_inputs: [a: None, b: None, b0: 0]
         

   MULp:
     type: macro
     description: |
       A simple macro element made of a single multiplier (MLT8) and two
       digital potentiometers (on DPT24).
       
       The flow chart is similar to SUMp:
       
          (a0)----+
                  |
                  v
          (a)->[DPTa]--(as)-->[       ]
                              [  MULo ]---> out
          (b)->[DPTb]--(bs)-->[       ]
                  ^
                  |
          (b0)----+

     input:
       - { name: a0,  type: digital }
       - { name: a,   type: analog  }
       - { name: b0,  type: digital }
       - { name: b,   type: analog  }
     output:
       - { name: out, type: analog  }
     computes:
       out: out = a0*a*b0*b/voltage_level
     default_inputs:
       a: PlusOne
       b: PlusOne
       a0: 0
       b0: 0
     internal_wires:
       - name: as
         type: analog
         description: Scaled a (output of DPTa)
       - name: bs
         type: analog
         description: Scaled b (output of DPTb)
     partlist:
       DPTa:
         type: DPT
         input: [ a0, a ]
         output: as
       DPTb:
         type: DPT
         input: [ b0, b]
         output: bs
       MULo:
         type: MUL
         input: [as, bs]
         output: out
     is_a:
       MUL:
         description: Can mimic a simple multiplier when having both DPTs = 1.
         default_inputs: [a0: 1, b0: 1]
       # DPT: would be ironic since MLT also multiplies. Would rather compute MLT(DPT(x,PlusOne),PlusOne)

         
   INTp:
     type: macro
     description: |
        A macro component made of an integrator (one in the INT4 module)
        and three potentiometers (two shall be implemented on the DPT24,
        one on the HC, but that doesn't matter at this stage).

        The integrator is an (implicite negating summing) intergrator
        with two inputs. For the moment, we dont make use of ModeIC and
        ModeOP. All inputs use weight a=10.

        In the moment, the ICs are realized by one potentiometer and
        a comparator. The compiler creates the binary sign which steers
        the comparator and is outputted by the Hybrid Controller (HC).

        The summer is a (negating) summer with a single input.
        The summer uses weight a=1.
        Neither in integrator nor summer, we make use of the SJ.

        The flow chart looks like

         ic ----------------------------+
                                        |
         HC digital output,             |
         icSign -----+                  |
                     | switches         | controls
                     v                  v
          +1 -(p1)->[ SignGen ]-(pm)->[DPTic]  (HC DPT)
          -1 -(m1)->[ (CMPda) ]         |
                                      (aic)
          a0 ------+                    |
                   | controls           | sets IC
                   v                    v
          a ->[DPTa]---(as)--->[10|            ]
                               [    Integrator ]----> out
          b ->[DPTb]---(bs)--->[10|            ]
                   ^
                   |  controls
          b0 ------+
     computes:
       out: out = -integral( a0*a(t) + b0*b(t), t)
     input:
       - name: a0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: a
         type: analog
       - name: b0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: b
         type: analog
       - name: icSign
         type: boolean
         description: Sign of initial condition value
       - name: ic
         type: numeric
         description: Value for initial condition
         range: [0, 1]
     output:
       - name: out
         type: analog
         description: Output of integral
     default_inputs:
       a: None
       b: None
       a0: 0
       b0: 0
       icSign: True
       ic: 0
     internal_wires:
       - name: as
         type: analog
         description: Scaled a (output of DPTa)
       - name: bs
         type: analog
         description: Scaled b (output of DPTb)
       - name: aic
         type: analog
         description: Analog Initial conditions (output of Comparator and multiplied by HC DPT)
       - name: pm
         type: analog
         description: Plus or Minus, depending on the sign bit
     partlist:
       DPTa:
         type: DPT
         input: [ a0, a ]
         output: as
       DPTb:
         type: DPT
         input: [ b0, b]
         output: bs
       SignGen:
         type: CMPda0
         input:
           i: icSign
           a: PlusOne
           b: MinusOne
         output: pm
       DPTic:
         type: DPT # but shall be implemented on HC for clarity
         input: [ ic, pm ]
         output: aic
       INTo:
         type: INT
         input: { d1: as, d2: bs, ic: aic }
         output: out
         
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
#         Macro elements with attached inverter (negation)
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

   SUMpinv:
     type: macro
     is_a:
       SUMp:
         description: |
           Can mimic a single potentiometered summer. Just ignore the inv output.
     description: |
        A macro component made of two summers (SUM8 module) and two digital
        potentiometers (on DPT24). It is an easy extension of the SUMp
        module, the flow chart is just:
        
                 +-------+
          a0  -->|       |        +--[ 1| SUMinv ]-> inv
          a   -->| SUMp  |        |
          b0  -->|       |--------+----------------> out
          b   -->|       |
                 +-------+
        
        Remember, the summer SUMo in SUMp uses weights a=10, while the
        inverting summer SUMinv uses weight a=1.

     computes:
       out: out =   a0*a + b0*b
       inv: inv = -(a0*a + b0*b)
     input:
       - name: a0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: a
         type: analog
       - name: b0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: b
         type: analog
     output:
       - name: out
         type: analog
         description: Output of minus operation (actual summer output)
       - name: inv
         type: analog
         description: Output of plus operation (negation of summer output)
     default_inputs:
       a: None
       b: None
       a0: 0
       b0: 0
     partlist:
       MainSummer:
         type: SUMp
         input: [ a0, a, b0, b ]
         output: out
       SUMinv:
         type: SUM
         input: { u1: out }
         output: inv

   MULpinv:
     type: macro
     description: |
       Extension of MUL2m with two outputs, where one is negated, thus
       requiring an internal summer.
       Flow chart is just:
       
        
                 +-------+
          a0  -->|       |        +--[ 1| SUMinv ]-> inv
          a   -->| MULp  |        |
          b0  -->|       |--------+----------------> out
          b   -->|       |
                 +-------+
     input:
       - name: a0
         type: digital
       - name: a
         type: analog
       - name: b0
         type: digital
       - name: b
         type: analog
     output:
       - name: out
         type: analog
       - name: inv
         type: analog
     computes:
       out: out =  a0*a*b0*b/voltage_level
       inv: inv = -a0*a*b0*b/voltage_level
     default_inputs:
       a: PlusOne
       b: PlusOne
       a0: 0
       b0: 0
     partlist:
       Multiplier:
         type: MULp
         input: [ a0, a, b0, b ]
         output: out
       SUMinv:
         type: SUM
         input: { u1: out }
         output: inv
         
   INTpinv:
     type: macro
     is_a:
       INTp:
         description: |
           Can mimic a single potentiometered integrator. Just ignore the inv output.
     description: |
        A macro component which can invert the output of INTp.
        The flow chart is just:
        
                 +-------+
          a0  -->|       |        +--[ 1| SUMinv ]-> inv
          a   -->| INTp  |        |
          b0  -->|       |--------+----------------> out
          b   -->|       |
          icSign>|       |
          ic  -->|       |
                 +-------+

     computes:
       out: out  =  integral( a0*a(t) + b0*b(t), t)
       inv: inv  = -integral( a0*a(t) + b0*b(t), t)
     input:
       - name: a0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: a
         type: analog
       - name: b0
         type: numeric
         description: Potentiometer prefactor
         range: [0, 1]
       - name: b
         type: analog
       - name: icSign
         type: boolean
         description: Sign of initial condition value
       - name: ic
         type: numeric
         description: Value for initial condition
         range: [0, 1]
     output:
       - name: inv
         type: analog
         description: Actual output of integrator
       - name: out
         type: analog
         description: Output of summer (negation of integrator)
     default_inputs:
       a: None
       b: None
       a0: 0
       b0: 0
       icSign: True
       ic: 0
     partlist:
       MainINT:
         type: INTp
         input: [ a0, a, b0, b, icSign, ic ]
         output: out
       SUMinv:
         type: SUM
         input: { u1: out }
         output: inv

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
#         Pseudo elements (Helpers)
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

   ConstantVoltage:
     description: |
       This is a pseudo-element only used for allocate a logic +1 and
       logic -1 on the XBAR.
       Usage examples are given in the partlist with the instances
       PlusOne and MinusOne. These parts are subject to be used
       also in the actual programs (for the time being), in order to
       realize constant inputs for computatational parts. We need
       +1 and -1 because the potentiometers only implement range [0,1].
       The operation x-0.5 is then realized by the pseudo-code
       SUMMER(a=x,a0=1,b=MinusOne,b0=0.5), while x+0.7 is realized by
       SUMMER(a=x,a0=1,b=PlusOne,b0=0.7).
     computes:
       value: value = x
     input:  [{ name: x,     type: analog }]
     output: [{ name: value, type: analog }]

   NoneType:
     description: |
       This pseudo-element is only used to implement computational
       elements with unconnected inputs. For instance, the pseudo-code
       SUMMER(x)=-x is actually implemented as
       SUMMER(a=x,a0=1,b=None,b0=0)  (the value of b0 is not relevant!).
       The compiler will throw out None elements in favour of disabling
       the corresponding output line of the XBAR.

       The None is also used for slurping input from the DPTs, therefore
       they have an input.
     computes: nothing
     input:          [{ name: none, type: analog }]
     output:         [{ name: none, type: analog }]
     default_inputs:  { none: 0 }


# Each of the wired hardware needs configuration by the HC
# (which also needs to be configured itself)
wired_parts:
  X1:
    type: XBAR
    address: 0x0040
    number_of_config_bytes: 10
    # Datasheet of chip AD8113:
    # https://www.analog.com/media/en/technical-documentation/data-sheets/AD8113.pdf
    topology: Single AD8113
    size: [ 16, 16 ]
    input_columns:
       - PlusOne          #  1
       - MinusOne         #  2
       - SUM0-2           #  3
       - SUM0-1: out      #  4
       - SUM0-1: inv      #  5
       - SUM0-0: out      #  6
       - SUM0-0: inv      #  7
       - MLT0-1           #  8
       - MLT0-0: out      #  9
       - MLT0-0: inv      # 10
       - INT0-2           # 11
       - INT0-1: out      # 12
       - INT0-1: inv      # 13
       - INT0-0: out      # 14
       - INT0-0: inv      # 15
       - None             # 16, empty!
    output_rows:
       - INT0-0: a        #  1
       - INT0-0: b        #  2
       - INT0-1: a        #  3
       - INT0-1: b        #  4
       - INT0-2: a        #  5
       - INT0-2: b        #  6
       - MLT0-0: a        #  7
       - MLT0-0: b        #  8
       - MLT0-1: a        #  9
       - MLT0-1: b        # 10
       - SUM0-0: a        # 11
       - SUM0-0: b        # 12
       - SUM0-1: a        # 13
       - SUM0-1: b        # 14
       - SUM0-2: a        # 15
       - SUM0-2: b        # 16

  D1:
    type: DPT24
    address: 0x0060
    size: 24
    enumeration:
       - INT0-0: a0    #  1
       - INT0-0: b0    #  2
       - INT0-1: a0    #  3
       - INT0-1: b0    #  4
       - INT0-2: a0    #  5
       - INT0-2: b0    #  6
       - MLT0-0: a0    #  7
       - MLT0-0: b0    #  8
       - MLT0-1: a0    #  9
       - MLT0-1: b0    # 10
       - SUM0-0: a0    # 11
       - SUM0-0: b0    # 12
       - SUM0-1: a0    # 13
       - SUM0-1: b0    # 14
       - SUM0-2: a0    # 15
       - SUM0-2: b0    # 16

  Main:
    # A Hybrid Controller has 8 DPTs, 8 digital inputs and
    # 8 digital outputs. There can actually be only one HC per
    # machine.
    type: HC
    address: 0x0080
    number_of_digital_output_ports: 8
    number_of_digital_input_ports: 8
    dpt_resolution: 10
    dpt_enumeration:
      - INT0-0: ic
      - INT0-1: ic
      - INT0-2: ic
    digital_input: []
    digital_output:
      - INT0-0: icSign
      - INT0-1: icSign
      - INT0-2: icSign